Generalizing Hamiltonian Monte Carlo with Neural Networks

نویسندگان

  • Daniel Levy
  • Matthew D. Hoffman
  • Jascha Sohl-Dickstein
چکیده

We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximize expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distributions, for instance achieving a 49× improvement in effective sample size in one case, and mixing when standard HMC makes no measurable progress in a second. Finally, we show quantitative and qualitative gains on a real-world task: latent-variable generative modeling. We release an open source TensorFlow implementation of the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Project Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks

The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...

متن کامل

Extracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy

Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...

متن کامل

Hamiltonian Monte Carlo Acceleration Using Neural Network Surrogate functions

Relatively high computational cost for Bayesian methods often limits their application for big data analysis. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea...

متن کامل

Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics Abstract Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics

Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics Kiam Choo Master of Science Graduate Department of Computer Science University of Toronto 2000 We consider a feedforward neural network model with hyperparameters controlling groups of weights. Given some training data, the posterior distribution of the weights and the hyperparameters can be obtained by alternately up...

متن کامل

Neural Network Gradient Hamiltonian Monte Carlo

Hamiltonian Monte Carlo is a widely used algorithm for sampling from posterior distributions of complex Bayesian models. It can efficiently explore high-dimensional parameter spaces guided by simulated Hamiltonian flows. However, the algorithm requires repeated gradient calculations, and these computations become increasingly burdensome as data sets scale. We present a method to substantially r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09268  شماره 

صفحات  -

تاریخ انتشار 2017